Реклама



Замовити роботу

Замовити роботу

Счетчики




Вітаємо вас на сторінках нашого сайту!

Сайт readbook.com.ua - це зібрання книг по темах: бухгалтерський облік, економіка, маркетинг, менеджмент, право, страхування, філософія та фінанси.

Сподіваємось, що ця література буде корисна, як для школярів, так і для студентів.

Усі книги викладені з метою ознайомлення.
Список всіх підручників >>> Менеджмент організації - Конспект лекцій

Тема 4. Методи обґрунтування управлінських рішень.

4.3. Обґрунтування рішень в умовах невизначеності



Теоретико-ігрові методи. В більшості випадків для прийняття управлінських рішень використовується неповна і неточна інформація, яка і утворює ситуацію невизначеності. Для обґрунтування рішень в умовах невизначеності використовують:
1) методи теорії статистичних рішень (ігри з природою);
2) методи теорії ігор.
 
Методи теорії статистичних рішень використовуються, коли невизначеність ситуації обумовлена об'єктивними обставинами, які невідомі або носять випадковий характер.
В задачах теорії статистичних рішень вже існує оцінка реалізації кожної стратегії для кожного стану природи. Проте зовсім невідомо, який із станів природи реально виникатиме. Для розв’язання таких задач використовуються наступні критерії (табл. 4.1):
 
1. Критерій песимізму (критерій Уолда). Згідно критерію песимізму для кожної стратегії існує найгірший з можливих результатів. Вибирається при цьому така стратегія, яка забезпечує найкращий з найгірших результатів, тобто забезпечує максимальний з можливих мінімальних результатів. Критерій песимізму у математично формалізованому виді можна представити так: max ( min Rij ).
 
2. Критерій оптимізму. У відповідності до цього критерію, для кожної стратегії є найкращий з можливих результатів. За допомогою критерію оптимізму вибирається стратегія, яка забезпечує максимальний результат з числа максимально можливих: max ( max Rij ).
 
3. Критерій коефіцієнта оптимізму (критерій Гурвіца). В реальності, особа яка приймає рішення, не є абсолютним песимістом або абсолютним оптимістом. Звичайно вона знаходиться десь поміж цими крайніми позиціями. У відповідності до таких передбачень і використовується критерій коефіцієнта оптимізму. Для математичної формалізації коефіцієнта оптимізму до його формули вводиться коефіцієнт l, який характеризує (у долях одиниці) ступінь відчуття особою, яка приймає рішення, що вона є оптимістом. Вибирається при цьому стратегія, яка забезпечує: max[l ( max Rij ) + ( 1- l )( min Rij)]. 
  


 
4. Критерій Лапласа. За допомогою трьох попередніх критеріїв стратегія обиралася, виходячи з оцінки результатів станів природи і практично не враховувалися ймовірності виникнення таких станів. Критерій Лапласа передбачає розрахунки очікуваних ефектів від реалізації кожної стратегії, тобто суми можливих результатів виникнення кожного стану природи зважених на ймовірності появи кожного з них. Вибирається при цьому стратегія, яка забезпечує максимальний очікуваний ефект:
n
max ( SRij * Pj ),
j=1
де Pj – імовірність виникнення j-го стану природи (у долях одиниці).
 
5. Критерій жалю (критерій Севіджа). Використання цього критерію передбачає, що особа, яка приймає рішення, має мінімізувати свої втрати при виборі стратегії. Іншими словами вона мінімізує свою потенційну помилку при виборі неправильного рішення. Використання критерію жалю передбачає:
- побудову матриці втрат. Втрати (bij) при цьому розраховуються окремо для кожної стратегії за формулою: bij = max Rij - min Rij;
- вибір кращої стратегії за формулою: min ( max bij ).
 
Теорія ігор використовується у випадках, коли невизначеність ситуації обумовлена свідомими діями розумного супротивника.
Організації звичайно мають цілі, які суперечать цілям інших організацій-конкурентів. Тому робота менеджерів часто полягає у виборі рішення з урахуванням дій конкурентів. Для вирішення таких проблем призначені методи теорії ігор.
Теорія ігор - це розділ прикладної математики, який вивчає моделі і методи прийняття оптимальних рішень в умовах конфлікту.
Під конфліктом розуміється така ситуація, в якій зіштовхуються інтереси двох або більше сторін, що переслідують різні (суперечні) цілі. При цьому кожне рішення має прийматися в розрахунку на розумного противника, який намагається зашкодити іншому учаснику гри досягти успіху.
Основну задачу теорії ігор можна сформулювати так: визначити, яку стратегію має застосувати розумний гравець у конфлікті з розумним противником, щоб гарантувати кожному з них виграш, причому відхилення будь-кого з гравців від оптимальної стратегії може тільки зменшити його виграш.
Центральне місце в теорії ігор займають парні ігри з нульовою сумою, тобто ігри, в яких:
- приймають участь тільки дві сторони;
- одна сторона виграє рівно стільки, скільки програє інша.
Такий рівноважний виграш, на який мають право розрахувати обидві сторони, якщо вони будуть додержуватися своїх оптимальних стратегій, називається ціною гри. Розв’язати парну гру з нульовою сумою означає знайти пару оптимальних стратегій (одну для першого гравця, іншу – для другого) і ціну гри.
Дві компанії Y і Z з метою збільшення обсягів продажу продукції розробили наступні альтернативні стратегії:
 
Компанія Y : - Y1 (зменшення ціни продукції);
- Y2 (підвищення якості продукції);
- Y3 (пропозиція вигідніших умов продажу).
 
Компанія Z : - Z1 (збільшення витрат на рекламу);
- Z2 (відкриття нових дистриб’юторських центрів);
- Z3 (збільшення кількості торгових агентів).
 
Вибір пари стратегій Yi i Zj визначає результат гри, який позначимо як Aij і вважатимемо його виграшем компанії Y. Тепер результати гри для кожної пари стратегій Y i Z можна записати у вигляді матриці, у якій m рядків та n стовпців. Рядки відповідають стратегіям компанії Y, а стовпці - стратегіям компанії Z:

Стратегії Y

Стратегії Z

Z1

Z2

Z3

Y1

А11

А12

А13

Y2

А21

А22

А23

Y3

А31

А32

А33

 

Така таблиця називається платіжною матрицею гри. Якщо гра записана у такому вигляді, це означає, що вона приведена до нормальної форми.
Для розв’язання гри розраховують верхню і нижню ціну гри та обчислюють сідлову точку.
Нижню і верхню ціну гри знаходимо керуючись принципом обережності, згідно якого у грі потрібно поводити себе так, щоб за найгірших для тебе діях суперника отримати найкращий результат (критерій песимізму).
Нижня ціна гри (яку прийнято позначати a) розраховується шляхом визначення мінімального значення Aij по кожному рядку платіжної матриці (стратегії гравця Y) і вибору з-поміж них максимального значення, тобто:
a = max ( min Aij ).
Верхня ціна гри (яку прийнято позначати b) розраховується шляхом визначення максимального значення Aij по кожному стовпцю платіжної матриці гри (стратегії гравця Z) і вибору з-поміж них мінімального значення, тобто:
b = min ( max Aij ).
Якщо нижня ціна гри дорівнює верхній (a = b), то така гра має сідлову точку і вирішується в чистих стратегіях. Сідлова точка – елемент платіжної матриці гри, який є мінімальним у своєму рядку і одночасно максимальним у своєму стовпці.
Чисті стратегії – це пара стратегій (одна - для першого гравця, а друга - для другого гравця), які перехрещуються в сідловій точці. Сідлова точка в цьому випадку і визначає ціну гри.
Ігри, які не мають сідлової точки, на практиці зустрічаються частіше. У цьому випадку рішення знаходиться в межах змішаних стратегій. Знайти рішення гри без сідлової точки означає визначення такої стратегії, яка передбачає використання кількох чистих стратегій.
 
Експертні методи прийняття рішень застосовуються у випадках, коли для прийняття управлінських рішень неможливо використовувати кількісні методи. Найчастіше на практиці застосовують такі експертні методи:
1) метод простого ранжування;
2) метод вагових коефіцієнтів.
 
Метод простого ранжування (надання переваги) полягає у тому, що кожний експерт позначає ознаки у порядку надання переваги. Цифрою 1 позначається найбільш важлива ознака, цифрою 2 - наступна за ступенем важливості і т.д.
 
Оцінки ознак (aij ) кожного експерта, зводяться в таблицю такого виду:

Ознаки

Експерти

1

2

...

m

x1

a11

a12

...

a1m

x2

a21

a22

...

a2m

...

...

...

...

...

xn

an1

an2

...

anm

 

Далі визначається середній ранг, тобто середнє статистичне значення Si за і-тою ознакою за формулою:
 ,
де aij – порядок надання переваги і-тій ознаці j-им експертом;
j - номер експерта;
і - номер ознаки;
m - кількість експертів.
Чим меншим є значення Si , тим вагомішою є ця ознака.
 
Метод вагових коефіцієнтів (оцінювання) полягає у наданні всім ознакам вагових коефіцієнтів. Воно може здійснюватися двома способами:
1) усім ознакам призначають вагові коефіцієнти так, щоб сума всіх коефіцієнтів дорівнювала 1 або 10, або100;
2) найважливішій з усіх ознак призначають ваговий коефіцієнт, який дорівнює певному фіксованому числу, а решті ознак – коефіцієнти, які дорівнюють часткам цього числа.
Узагальнену думку експертів Si за і-ою ознакою розраховують за формулою:
 ,
де aij - ваговий коефіцієнт, який призначив j-ий експерт і-ій ознаці;
j - номер експерта;
і - номер ознаки;
m - кількість експертів, які оцінюють і-ту ознаку.
Чим більшою є величина Si, тим більш вагомою є ця ознака.





© 2009 Читальня On-Line
Підручники розміщені на сайті для ознайомлення. Графічний матеріал, формули та текстова частина опубліковані частково.